IT HOME Programming care

IT HOME Programming Care

Friday, November 25, 2016

MATHEMATICAL OPERATIONS USING OP-AMP Lab 06

Green University of Bangladesh
Faculty of Science and Engineering
Department of Electrical and Electronic Engineering
Program: B.Sc. Engg. in EEE
Course Title: EEE 2210 Electronics Lab
Course Credit: 1.5, Prerequisite: EEE 2105, EEE 2209

Experiment No: 09

NAME OF THE EXPERIMENT:  Mathematical OPERATIONS USING OP-AMP


Objective
Any kind of mathematical operations can be done using OP-AMP. In this experiment only three i.e. addition, differentiation and integration operations will be performed.

Theory
The property of infinite impedance and infinite gain of an operational amplifier results in a situation of zero voltage between the two input terminals. The effect is known as a virtual ground. Due to this effect, the op-amp can be used to perform some mathematical operations.
      Addition:   Using the concept of inverting amplifier, the op-amp can be used as an adder     (actually inverting adder) to sum up some input signals. In Fig.1 the output of the op-amp is
V0 = - (E1 + E2 + E3 )


 
 Adder circuit


                                                                                                             
Integration and Differentiation:  The circuit in Fig. 2 acts as an integrator where the output
 voltage is given as:

Integrator circuit





     Similarly, the circuit in Fig. 3 acts as a differentiator and the output voltage is given as:
 


Different circuit

                          
Apparatus
Trainer board                  1 Capacitor 10mF
OP-AMP (741)               1 Oscilloscope
Resistance                      50kW, 10kW, 20kW

Procedure
1.      Implement the adder circuit as shown in Fig.1. Apply the supply voltages as +12V and        -12V at pin no. 7 and 4 respectively. Apply the input voltages E1= 2V, E2= 3V and E3= 4V, and measure the output voltage.
2.      Implement the integrator circuit as in Fig. 2.
3.      Apply a sinusoidal waveform of 5 volt p-p in the input. Observe the output.
4.      Change the resistance to 50kW and observe the output voltage wave shape.
5.      Repeat step 3 and 4 for a square wave input signal.
6.      Repeat step 3 and 4 for a saw-tooth input signal.
7.      Implement the differentiator circuit in Fig. 3.
8.      Repeat steps 3 to 6.

Report
1.      Draw the input and output waveforms of the integrator and differentiator circuit.
2.      Design a circuit which will take two inputs v1(t) and v2(t); producing an output of v0(t) = 0.5v1(t) +20óv2(t)dt.



0 comments:

Post a Comment

'; (function() { var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true; dsq.src = '//' + disqus_shortname + '.disqus.com/embed.js'; (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq); })();

IT HOME Freelancing Care